A Neural Network Model of 3-D Lightness Perception

نویسندگان

  • Luiz Pessoa
  • William D. Ross
چکیده

William D. Ross Boston University Boston, MA 02215 [email protected] A neural network model of 3-D lightness perception is presented which builds upon the FACADE Theory Boundary Contour System/Feature Contour System of Grossberg and colleagues. Early ratio encoding by retinal ganglion neurons as well as psychophysical results on constancy across different backgrounds (background constancy) are used to provide functional constraints to the theory and suggest a contrast negation hypothesis which states that ratio measures between coplanar regions are given more weight in the determination of lightness of the respective regions. Simulations of the model address data on lightness perception, including the coplanar ratio hypothesis, the Benary cross, and White's illusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is lightness induction a pictorial illusion?

Lightness induction, or simultaneous lightness contrast (we prefer the term lightness induction since contrast has another meaning in the visual literature, namely, the relative intensity of the stimulation), was studied for a 3-D object (Adelson's wall of blocks) and its 2-D pictorial representations. A statistically significant lightness induction effect was found only for the pictures but no...

متن کامل

A neuromorphic model for achromatic and chromatic surface representation of natural images

This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightn...

متن کامل

Estimation of bremsstrahlung photon fluence from aluminum by artificial neural network

Background: As bremsstrahlung photon beam fluence is important parameter to be known in a photonuclear reaction experiment as the number of produced particle is strongly depends on photon fluence. Materials and Methods: Photon production yield from different thickness of aluminum target has been estimated using artificial neural network (ANN) model. Target thickness and incoming electr...

متن کامل

Using Neural Network to Determine Input Excesses, Output Shortfalls and Efficiency of Dmus in Russell Mode

Data Envelopment Analysis (DEA) has two fundamental approaches for assessing theefficiency with different characteristics; radial and non-radial models. This paper isconcerned the non-radial model of Russell which is a non linear model. Conventional DEAfor a large dataset with many inputs/outputs would require huge computer resources in termsof memory and CPU time. Artificial Neural Network (AN...

متن کامل

Comparing Two Methods of Neural Networks to Evaluate Dead Oil Viscosity

Reservoir characterization and asset management require comprehensive information about formation fluids. In fact, it is not possible to find accurate solutions to many petroleum engineering problems without having accurate pressure-volume-temperature (PVT) data. Traditionally, fluid information has been obtained by capturing samples and then by measuring the PVT properties in a laboratory. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995